Preparation and characterizations of three-dimensional porous collagen/graphene oxide/hydroxyapatite nanocomposite scaffolds for bone tissue engineering
نویسندگان
چکیده
منابع مشابه
Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملaligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (pcl), poly (vinyl alcohol) (pva) and hydroxyapatite nanoparticles (nha). the morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملFabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering
Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...
متن کاملThree-dimensional printing of porous ceramic scaffolds for bone tissue engineering.
This article reports a new process chain for custom-made three-dimensional (3D) porous ceramic scaffolds for bone replacement with fully interconnected channel network for the repair of osseous defects from trauma or disease. Rapid prototyping and especially 3D printing is well suited to generate complex-shaped porous ceramic matrices directly from powder materials. Anatomical information obtai...
متن کاملFabrication of Porous Hydroxyapatite-Gelatin Scaffolds Crosslinked by Glutaraldehyde for Bone Tissue Engineering
In this study, to mimic the mineral and organic components of natural bone, hydroxyapatite[HA] and gelatin[GEL] composite scaffolds were prepared using the solvent-casting method combined with a freeze drying process. Glutaraldehyde[GA] was used as a cross linking agent and sodium bisulfite was used as an excess GA discharger. Using this technique, it is possible to produce scaffolds with mecha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Science Journal
سال: 2019
ISSN: 2466-4308
DOI: 10.23954/osj.v4i1.2123